Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase.

نویسندگان

  • Yusuke Yagi
  • Yoko Ishizaki
  • Yoichi Nakahira
  • Yuzuru Tozawa
  • Takashi Shiina
چکیده

Plastid transcription is mediated by two distinct types of RNA polymerases (RNAPs), bacterial-type RNAP (PEP) and phage-type RNAP (NEP). Recent genomic and proteomic studies revealed that higher plants have lost most prokaryotic transcription regulators and have acquired eukaryotic-type proteins during plant evolution. However, in vivo dynamics of chloroplast RNA polymerases and eukaryotic-type plastid nucleoid proteins have not been directly characterized experimentally. Here, we examine the association of the α-subunit of PEP and eukaryotic-type protein, plastid transcriptionally active chromosome 3 (pTAC3) with transcribed regions in vivo by using chloroplast chromatin immunoprecipitation (cpChIP) assays. PEP α-subunit preferentially associates with PEP promoters of photosynthesis and rRNA genes, but not with NEP promoter regions, suggesting selective and accurate recognition of PEP promoters by PEP. The cpChIP assays further demonstrate that the peak of PEP association occurs at the promoter-proximal region and declines gradually along the transcribed region. pTAC3 is a putative DNA-binding protein that is localized to chloroplast nucleoids and is essential for PEP-dependent transcription. Density gradient and immunoprecipitation analyses of PEP revealed that pTAC3 is associated with the PEP complex. Interestingly, pTAC3 associates with the PEP complex not only during transcription initiation, but also during elongation and termination. These results suggest that pTAC3 is an essential component of the chloroplast PEP complex. In addition, we demonstrate that light-dependent chloroplast transcription is mediated by light-induced association of the PEP-pTAC3 complex with promoters. This study illustrates unique dynamics of PEP and its associated protein pTAC3 during light-dependent transcription in chloroplasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HS...

متن کامل

Plastid encoded RNA polymerase activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP) and a nuclear-encoded phage-type RNA polymerase (NE...

متن کامل

Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development

Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respect...

متن کامل

Transcriptional Control of Photosynthesis Genes: The Evolutionarily Conserved Regulatory Mechanism in Plastid Genome Function

Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts--photosynthetic plastids--in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. P...

متن کامل

Dynamic composition, shaping and organization of plastid nucleoids

In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 19  شماره 

صفحات  -

تاریخ انتشار 2012